
G. Zachmann 24Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

Thread Layouts for 2D Computational Problems

� Many computational problems have a 2D domain (e.g., CV)

� Many others have a 3D domain (e.g., fluids simulation)

� Solution: layout threads in 2D

� Simplifies index calculations a lot

G. Zachmann 25Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

� Definition:

� For each consider the (infinity) sequence

� Define the Mandelbrot set

� Theorem (w/o proof):

� Visualizing nicely:

� Color pixel c = (x,y) black, if |z| remains <2

after "many" iterations

� Color c depending on the number of iterations

necessary to make |zt| > 2

Example: Mandelbrot Set Computation

G. Zachmann 26Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

� A few interesting facts about

(with which you can entertain people at a party ☺):

� The length of the border of is infinite

� is connected

(i.e., all "black" regions are connected with each other)

- Mandelbrot himself believed was disconnected

� For each color, there is exactly one "ribbon" around , i.e., there is

exactly one ribbon of values c, such that |z1| > 2, there is exactly one

ribbon of values c, such that |z2| > 2 , etc. …

� Each such "iteration ribbon" reaches goes completely around and

it is connected (i.e., there are no "self intersections")

� There is an infinite number of "mini Mandelbrot sets", i.e., smaller

copies of (self similarity)

G. Zachmann 27Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

Computing the Mandelbrot Set on the GPU

� Embarrassingly parallel: each pixel computes their own z-

sequence, then sets the color

� Usual code for allocating memory, here a bitmap:

� Setup threads layout, here a 2D arrangement of blocks

� Here, we assume image size = multiple of 32

- Simplifies calculation of number of blocks

- Also simplifies kernel: we don't need to check whether thread out of range

- See example code on web page how to ensure that

const unsigned int bitmap_size = img_size * img_size * 4;

h_bitmap = new unsigned char[bitmap_size];

cudaMalloc((void**) &d_bitmap, bitmap_size);

dim3 threads(16, 16);

dim3 blocks(img_size/threads.x, img_size/threads.y);

G. Zachmann 28Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

� Launch kernel:

� Implementation of the kernel (simplified):

mandelImage<<< blocks,threads >>>(d_bitmap, img_size);

__global__

void mandelImage(char4 * bitmap, const int img_size)

{

int x = blockIdx.x * blockDim.x + threadIdx.x;

int y = blockIdx.y * blockDim.y + threadIdx.y;

int offset = x + y * (gridDim.x * blockDim.x); // x + y * width

int isOutsideM = isPointInMandelbrot(x, y, img_size);

bitmap[offset].x = 255 * isOutsideM; // red = outside

bitmap[offset].y = bitmap[offset].z = 0;

bitmap[offset].w = 255;

}

G. Zachmann 29Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

� Visualization of our layout:

16

1
6

G. Zachmann 30Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

� In general, the layout of

threads can change

from kernel to kernel:

G. Zachmann 31Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

A Word About dim3

� Definition (done by CUDA):

� Usage:

� Launching a kernel like this:

is equivalent :

struct dim3 // is actually a C++ class

{

unsigned int x, y, z;

};

dim3 layout(nx); dim3 layout(nx,1); dim3 layout(nx,1,1);= =

dim3 layout(nx,ny); dim3 layout(nx,ny,1);=

kernel<<<N,M>>>(...);

dim3 threads(M,1);

dim3 blocks(N,1);

kernel<<<blocks,threads>>>(...);

G. Zachmann 32Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

Implementation of the Kernel

__device__

int isPointInMandelbrot(int x, int y,

const int img_size, float scale)

{

cuComplex c((float)(x - img_size/2) / (img_size/2),

(float)(y - img_size/2) / (img_size/2));

c *= scale;

cuComplex z(0.0, 0.0); // z_i of the sequence

for (int i = 0; i < 200; i ++)

{

z = z*z + c;

if (z.magnitude2() > 4.0f) // |z|^2 > 2^2 -> outside

return i;

}

return 0;

}

G. Zachmann 33Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

struct cuComplex // define a class for complex numbers

{

float r, i; // real and imaginary part

__device__ // constructor

cuComplex(float a, float b) : r(a), i(b) {}

__device__ // |z|^2

float magnitude2(void)

{

return r * r + i * i;

}

__device__ // z1 * z2

cuComplex operator * (const cuComplex & a)

{

return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);

}

// for more: see example code on web page

};

G. Zachmann 34Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

� Remarks:

� __global__ defines a kernel function

� Each '__' consists of two underscore characters

� A kernel function must return void

� __device__ and __host__ can be used together

hosthost__host__ float HostFunc() ;

hostdevice__global__ void KernelFunc() ;

devicedevice__device__ float DeviceFunc();

Only callable
from:

Executed
on:

Three different kinds of functions in CUDA

G. Zachmann 35Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

� Example for the latter: make cuComplex usable on both device

and host

struct cuComplex // define a class for complex numbers

{

float r, i; // real, imaginary part

__device__ __host__

cuComplex(float a, float b) : r(a), i(b) {}

__device__ __host__

float magnitude2(void)

{

return r * r + i * i;

}

// etc. ...

};

G. Zachmann 36Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

� An "Optimization":

� The sequence of zi can

either converge towards single

(complex) value,

� or it can end up in a cycle of values,

� or it can be chaotic.

� Idea:

� Try to recognize such cycles;

if you realize that a thread's is

caught in a cycle, exit immediately

(should happen much earlier in most cases)

� Maintain an array of the k most recent elements of the sequence

� Last time I checked: 4x slower than the brute-force version!

All points here
converge
towards
fixed point

All points here
converge
towards cycle
of length 2

G. Zachmann 37Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

Querying the Device for its Capabilities

� How do you know how many threads can be in a block, etc.?

� Query your GPU, like so:

int devID;

cudaGetDevice(&devID); // GPU currently in use

cudaDeviceProp props;

cudaGetDeviceProperties(&props, devID);

unsigned int threads_per_block = props.maxThreadsPerBlock;

G. Zachmann 38Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

For Your Reference: the Complete Table of the cudaDeviceProp

G. Zachmann 39Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

G. Zachmann 40Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

G. Zachmann 41Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

Problem Partitioning

� Problem: your input, e.g. the vectors, is larger than the maximally

allowed size along one dimension?

� I.e., what if vec_len > maxThreadsDim[0] * maxGridSize[0]?

� Solution: partition the problem (color = thread ID)

For most kind of

applications

these two

partitionings are

best for GPUs!

G. Zachmann 42Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

Example: Adding Huge Vectors

� Vectors of size 100,000,000 are not uncommon in high-

performance computing (HPC) …

� The thread layout:

� Kernel launch:

� Index computation in the kernel:

dim3 threads(16,16); // = 256 threads per block

int n_threads_pb = threads.x * threads.y;

int n_blocks = (vec_len + n_threads_pb - 1) / n_threads_pb;

int nb_sqrt = (int)(ceilf(sqrtf(n_blocks)));

dim3 blocks(nb_sqrt, nb_sqrt);

addVectors<<< threads, blocks >>>(d_a, d_b, d_c, n);

unsigned int tid_x = blockDim.x * blockIdx.x + threadIdx.x;

unsigned int tid_y = blockDim.y * blockIdx.y + threadIdx.y;

unsigned int i = tid_y * (blockDim.x * gridDim.x) + tid_x;

G. Zachmann 43Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

� Visualization of this index computation:

blockIdx.x

blockIdx.y

Block

Grid

threadIdx.x

threadIdx.y

x

y

G. Zachmann 44Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

Constant Memory

� Why is it so important to declare constant variables/instances in

C/C++ as const ?

� It allows the compiler to …

� optimize your program a lot

� do more type-checking

� Something similar exists in CUDA → constant memory

G. Zachmann 45Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

Example: a Simple Raytracer

� The ray-tracing principle:

1. Shoot rays from camera through every pixel into scene (primary rays)

2. If the rays hits more than one object, then consider only the first hit

3. From there, shoot rays to all light sources (shadow feelers)

4. If a shadow feeler hits another obj → point is in shadow w.r.t. that light source.

Otherwise, evaluate a lighting model (e.g., Phong [see "Computer graphics"])

5. If the hit object is glossy, then shoot reflected rays into scene (secondary rays) → recursion

6. If the hit object is transparent, then shoot refracted ray →more recursion

G. Zachmann 46Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

� Simplifications (for now):

� Only primary rays

� Camera at infinity →

primary rays are orthogonal to image plane

� Only spheres

- They are so easy, every raytracer has them ☺
x

y

z

G. Zachmann 47Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

� The data structures:

struct Sphere

{

Vec3 center; // center of sphere

float radius;

Color r, g, b; // color of sphere

__device__

bool intersect(const Ray & ray, Hit * hit)

{

...

}

};

G. Zachmann 48Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

� The mechanics on the host side:

int main(void)

{

// create host/device bitmaps (see Mandelbrot ex.)

...

Sphere * h_spheres = new Sphere[n_spheres];

// generate spheres, or read from file

// transfer spheres to device (later)

// generate image by launching kernel

// assumption: img_size = multiple of 16!

dim3 threads(16,16);

dim3 blocks(img_size/16, img_size/16);

raytrace<<<blocks,threads>>>(d_bitmap);

// display, clean up, and exit

};

G. Zachmann 49Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

The mechanics on the device side

__global__

void raytrace(unsigned char * bitmap) {

// map from thread id to pixel pos

int x = blockIdx.x * blockDim.x + threadIdx.x;

int y = blockIdx.y * blockDim.y + threadIdx.y;

int offset = x + y * (gridDim.x * blockDim.x);

Ray primary(x, y, camera); // generate primary ray

// check intersection with scene, take closest one

min_dist = INF;

int hit_sphere = MAX_INT;

Hit hit;

for (int i = 0; i < n_spheres; i ++) {

if (intersect(ray, i, & hit)) {

if (hit.dist < min_dist) {

min_dist = hit.dist; // found a closer hit

hit_sphere = i; // remember sphere; hit info

} // is already filled

}

}

// compute color at hit point (if any) and set in bitmap[offset]

}

G. Zachmann 50Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

Declaration & transfer

� Since it's constant memory, we declare it as such:

� Transfer now works by a different kind of Memcpy:

const int MAX_NUM_SPHERES 1000;

__constant__ Sphere c_spheres[MAX_NUM_SPHERES];

int main(void)

{

...

// transfer spheres to device (later)

cudaMemcpyToSymbol(c_spheres, h_spheres,

n_spheres * sizeof(Sphere));

...

};

G. Zachmann 51Fundamental Algos & Introduction to CUDAMassively Parallel Algorithms 25 April 2013SS

� Access of constant memory on the device (i.e., from a kernel)

works just like with any globally declared variable

� Example:

__constant__ Sphere c_spheres[MAX_NUM_SPHERES];

__device__

bool intersect(const Ray & ray, int s, Hit * hit)

{

Vec3 m(c_spheres[s].center – ray.orig);

float q = m*m – c_spheres[s].radius*c_spheres[s].radius;

float p = ...

solve_pq(p, q, *t1, *t2);

...

}

⇒

